Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer.
نویسنده
چکیده
RNA performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. The reason probably is twofold: (a) Life started as a prebiotic RNA World, in which RNA served as the genetic information carrier and catalyzed all chemical reactions required for its proliferation and (b) some of the RNA World functions were conserved throughout evolution because neither DNA nor protein is as adept in fulfilling them. A particular advantage of RNA is its high propensity to form alternative structures as required in subsequent steps of a reaction pathway. Here I describe fluorescence resonance energy transfer (FRET) as a method to monitor a crucial conformational transition on the reaction pathway of the hairpin ribozyme, a small catalytic RNA motif from a self-replicating plant virus satellite RNA and well-studied paradigm of RNA folding. Steady-state FRET measurements in solution allow one to measure the kinetics and requirements of docking of its two independently folding domains; time-resolved FRET reveals the relative thermodynamic stability of the undocked (extended, inactive) and docked (active) ribozyme conformations; while single-molecule FRET experiments will highlight the dynamics of RNA at the individual molecule level. Similar domain docking events are expected to be at the heart of many biological functions of RNA, and the described FRET techniques promise to be adaptable to most of the involved RNA systems.
منابع مشابه
Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations.
Enzymes generally are thought to derive their functional activity from conformational motions. The limited chemical variation in RNA suggests that such structural dynamics may play a particularly important role in RNA function. Minimal hammerhead ribozymes are known to cleave efficiently only in ∼ 10-fold higher than physiologic concentrations of Mg(2+) ions. Extended versions containing native...
متن کاملDisparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformationa...
متن کاملProbing RNA structural dynamics and function by fluorescence resonance energy transfer (FRET).
Biological function of RNA is often mediated by cyclic switching between several (meta-)stable arrangements of tertiary structure. Fluorophore labeling of RNA offers a unique view into these folding and conformational switching events, since a fluorescence signal is sensitive to its molecular environment and can be continuously monitored in real time to produce kinetic rate information. This un...
متن کاملA base change in the catalytic core of the hairpin ribozyme perturbs function but not domain docking.
The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structu...
متن کاملIn the fluorescent spotlight: global and local conformational changes of small catalytic RNAs.
RNA is a ubiquitous biopolymer that performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. RNA is unique in that it can carry both genetic information and catalytic function. Its secondary structure domains, which fold stably and independently, assemble hierarchically into modular tertiary structures. Studies of these fol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2001